Calibration of the Stochastic Multicloud Model Using Bayesian Inference
نویسندگان
چکیده
منابع مشابه
Calibration of the Stochastic Multicloud Model Using Bayesian Inference
The stochastic multicloud model (SMCM) was recently developed (Khouider, Biello, and Majda, 2010) to represent the missing variability in general circulation models due to unresolved features of organized tropical convection. This research aims at finding a robust calibration methodology for the SMCM to estimate key model parameters from data. We formulate the calibration problem within a Bayes...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولthe effect of using model essays on the develpment of writing proficiency of iranina pre-intermediate efl learners
abstract the present study was conducted to investigate the effect of using model essays on the development of writing proficiency of iranian pre-intermediate efl learners. to fulfill the purpose of the study, 55 pre- intermediate learners of parsa language institute were chosen by means of administering proficiency test. based on the results of the pretest, two matched groups, one as the expe...
Bayesian Estimation and Inference Using Stochastic Electronics
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where ...
متن کاملNonparametric Bayesian inference of the microcanonical stochastic block model.
A principled approach to characterize the hidden structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2014
ISSN: 1064-8275,1095-7197
DOI: 10.1137/13094267x